Growth inhibition of Toxoplasma gondii and Plasmodium falciparum by nanomolar concentrations of 1-hydroxy-2-dodecyl-4(1H)quinolone, a high-affinity inhibitor of alternative (type II) NADH dehydrogenases.
نویسندگان
چکیده
Both apicomplexan parasites Toxoplasma gondii and Plasmodium falciparum lack type I NADH dehydrogenases (complex I) but instead carry alternative (type II) NADH dehydrogenases, which are absent in mammalian cells and are thus considered promising antimicrobial drug targets. The quinolone-like compound 1-hydroxy-2-dodecyl-4(1H)quinolone (HDQ) was recently described as a high-affinity inhibitor of fungal alternative NADH dehydrogenases in enzymatic assays, probably by interfering with the ubiquinol binding site of the enzyme. We describe here that HDQ effectively inhibits the replication rates of P. falciparum and T. gondii in tissue culture. The 50% inhibitory concentration (IC50) of HDQ for T. gondii was determined to be 2.4+/-0.3 nM with a growth assay based on vacuole sizes and 3.7+/-1.4 nM with a growth assay based on beta-galactosidase activity. Quantification of the P. falciparum replication rate using a fluorometric assay revealed an IC50 of 14.0+/-1.9 nM. An important feature of the HDQ structure is the length of the alkyl side chain at position 2. Derivatives with alkyl side chains of C6, C8, C12 (HDQ), and C14 all displayed excellent anti-T. gondii activity, while a C5 derivative completely failed to inhibit parasite replication. A combined treatment of T. gondii-infected cells with HDQ and the antimalarial agent atovaquone, which blocks the ubiquinol oxidation site of cytochrome b in complex III, resulted in synergism, with a calculated fractional inhibitory concentration of 0.16 nM. Interference of the mitochondrial ubiquinone/ubiquinol cycle at two different locations thus appears to be a highly effective strategy for inhibiting parasite replication. HDQ and its derivatives, particularly in combination with atovaquone, represent promising compounds with a high potential for antimalarial and antitoxoplasmal therapy.
منابع مشابه
Growth inhibition of Toxoplasma gondii and Plasmodium falciparum by Nanomolar Concentrations of HDQ (1-hydroxy-2-dodecyl-4(1H)quinolone): a High Affinity Inhibitor of Alternative (type II) NADH Dehydrogenases
Both apicomplexan parasites Toxoplasma gondii and Plasmodium falciparum lack type I NADH dehydrogenases (complex I), but instead encode alternative (type II) NADH dehydrogenases, which are absent in mammalian cells and are thus considered as promising antimicrobial drug targets. The quinolone-like compound 1-hydroxy-2-dodecyl-4(1)quinolone (HDQ) was recently 5 described as a high affinity inhib...
متن کاملIn vitro and in vivo activities of 1-hydroxy-2-alkyl-4(1H)quinolone derivatives against Toxoplasma gondii.
1-Hydroxy-2-dodecyl-4(1H)quinolone (HDQ) was recently identified as a Toxoplasma gondii inhibitor. We describe here two novel 1-hydroxyquinolones, which displayed 50% inhibitory concentrations 10- and 5-fold lower than that of HDQ. In a mouse model of acute toxoplasmosis, these two compounds and HDQ reduced the percentages of infected peritoneal cells and decreased the parasite loads in lungs a...
متن کاملIdentification, Design and Biological Evaluation of Bisaryl Quinolones Targeting Plasmodium falciparum Type II NADH:Quinone Oxidoreductase (PfNDH2)
A program was undertaken to identify hit compounds against NADH:ubiquinone oxidoreductase (PfNDH2), a dehydrogenase of the mitochondrial electron transport chain of the malaria parasite Plasmodium falciparum. PfNDH2 has only one known inhibitor, hydroxy-2-dodecyl-4-(1H)-quinolone (HDQ), and this was used along with a range of chemoinformatics methods in the rational selection of 17 000 compound...
متن کاملTargeted Phenotypic Screening in Plasmodium falciparum and Toxoplasma gondii Reveals Novel Modes of Action of Medicines for Malaria Venture Malaria Box Molecules
The Malaria Box collection includes 400 chemically diverse small molecules with documented potency against malaria parasite growth, but the underlying modes of action are largely unknown. Using complementary phenotypic screens against Plasmodium falciparum and Toxoplasma gondii, we report phenotype-specific hits based on inhibition of overall parasite growth, apicoplast segregation, and egress ...
متن کاملNuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum.
A vestigial, nonphotosynthetic plastid has been identified recently in protozoan parasites of the phylum Apicomplexa. The apicomplexan plastid, or "apicoplast," is indispensable, but the complete sequence of both the Plasmodium falciparum and Toxoplasma gondii apicoplast genomes has offered no clue as to what essential metabolic function(s) this organelle might perform in parasites. To investig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 51 4 شماره
صفحات -
تاریخ انتشار 2007